EST-based genome-wide gene inactivation identifies ARAP3 as a host protein affecting cellular susceptibility to anthrax toxin.

نویسندگان

  • Quan Lu
  • Wensheng Wei
  • Paul E Kowalski
  • Annie C Y Chang
  • Stanley N Cohen
چکیده

The lethality of infection by Bacillus anthracis is largely due to its plasmid-encoded toxins, which consist of a carrier protein, the protective antigen (PA), in combination with either the lethal-factor or edema-factor moiety. During B. anthracis infections, PA secreted by bacteria binds to membrane receptors of susceptible cells, is cleaved proteolytically, attaches to lethal factor or edema factor, undergoes oligomerization and internalization, and transports its toxin partners to acidic endosomes where they are released into the cytosol. To identify specific host functions that mediate these events, we used RNA encoded by a lentivirus-based library of approximately 40,000 human ESTs to inactivate chromosomal genes in a human cell population, and we isolated clones that survived PA-dependent toxin-induced death. This phenotypic screen and subsequent analysis identified ARAP3, which is a phosphoinositide-binding protein implicated previously in membrane vesicle trafficking and cytoskeletal organization, as a mammalian host-cell gene that is essential for normal anthrax toxicity. ARAP3 deficiency produced by antisense expression of an ARAP3 EST impaired entry of PA and its bound toxigenic moieties into both human and mouse cells, resulting in reduced toxin sensitivity. Our results demonstrate the usefulness of antisense EST libraries for global chromosomal gene inactivation, establish the practicality of loss-of-function phenotypic screens for the identification of genomic loci required for pathogen effects in mammalian cells, and reveal an important role for ARAP3 in cellular internalization of anthrax toxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human genetic variation altering anthrax toxin sensitivity.

The outcome of exposure to infectious microbes or their toxins is influenced by both microbial and host genes. Some host genes encode defense mechanisms, whereas others assist pathogen functions. Genomic analyses have associated host gene mutations with altered infectious disease susceptibility, but evidence for causality is limited. Here we demonstrate that human genetic variation affecting ca...

متن کامل

Anthrax: A motor protein determines anthrax susceptibility

A new study has found that polymorphisms in the host gene kif1C, which encodes a kinesin-like motor protein, determine whether mouse macrophages are resistant or sensitive to anthrax lethal toxin. These findings may lead the way to discovering how both germ and host factors might contribute to a lethal infection.

متن کامل

Exclusion of Kif1c as a candidate gene for anthrax toxin susceptibility.

Different strains of mice possess varying degrees of susceptibility to anthrax lethal toxin (LT). Previous studies have suggested a responsible locus Ltxs1 that contains 10 or more known genes, but functional relevance has been reported for two genes, Kif1c and Nalp1b. In this study, we attempted to determine the involvement of Kif1c in anthrax susceptibility using Kif1c knockout mice. We estab...

متن کامل

Expression of Recombinant Protein B Subunit Pili from Vibrio Cholera

Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...

متن کامل

Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation

Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 49  شماره 

صفحات  -

تاریخ انتشار 2004